Most Big Mapping.	Class Gos fail to	the Tits Alternative
Daniel Allcock,	U.T. Geometry Sei	ina Mar 4, 2021.
_	not finitely genera	ated. [All surfaces taken
"Loch Ness Monster"	"Jacob's ladder"	"Canter Ortones (al
		"Canter Octopus Surface" Sin Canter set
End space:	Endspace:	End space:
1 end,	2 ends	co many endo: end space is a Cantor Sot.
approximated by genus	each approx. by genus.	None of them
Classification of suc	faces without I	affrein and by gengs.
Requires concept of an	end being approximated	by genus if every
neighborhood of that	end has 00 genus.	
Thm (Kerékjártó 1923	given surfo S., Sz	
Si=Si ⇔ J home	eo $Ends(S_i) \cong Ends(S_i)$	(S) that ide the
	ends approximately by	COLLIN AND SAME
those of	2 5	gences of si, with

Mapping class gp of S: defid the usual way: Honeot(S)/2
For cpt S, MCG(S) is an industry. For bry S, MCG can be very big:
Hougab-Vatel- Vamis found uncountably many I with property:
Every countable of occurs as a subgrap MCG(S)!
Sketch for S= Lack Non S. 1
Sketch for S = Loch Ness Surface : given countably 20 G, chance
gentiality well $\Lambda = G$; build Cayley graph of G:
$\forall g \in G, \ \forall x_i \in X$ $V := \text{"Vertex enclass"} - 1D^2 \text{ in } x_i \in X$
V:= "vertex ourface" = 12 with as many handles, minu as many open disks:
edge is labeled in the something open disks:
g "X;" minus
Texample with finite gar set:
One copy of V per vertex, of circles
in Caylog graph. J:= result
$\begin{vmatrix} -a & \bar{s} \end{vmatrix} = \begin{vmatrix} -a & \bar{s} \end{vmatrix}$
- White Maced by genus.
RK: "hyperbolic purfaces with prencibed or symmetry gps" (A., 2006): can choose hyperbolic metric st. Ison (5) equals G.
can choose hyperbolic metric 56 Ison (5) equals 6
Ev: expect his is
So: expect big MCG; to be "wild". I many measures of wild:
Every finitely general cubes 6 p (1)
and (up to finite index) ["(c 11")
or (i) Contains a copy of the free go Fz. ["G big"]

Express by saying "Gln(k) satisfies the Tits Alternative" Impl. Gps Satisfying it: MCG (cpt au-f) Out (Fn)
Granor-Hyperbolic gps.
Various Arbin Gps (incl. Braid Gps) Lanier-Loving shared a big MCG can fail the "strong" Tits Alt. Asked about the ordinary one: Thm. (A. 2020) Suppose S to a big surface (connected, orientable, without d). Then MCG(S) fails the Tits Alternative. Essential Case: S contains $D^2 - (Canter set in interior of <math>D^2)$: Cantor Octopus (minus open disk) de composed into pairs of pants gland in the pattern of the so binary (noted) tree: We must build a lig subge & = MCG(S) that is 1) has no solvable finite-index subgp. (i) contains no copy of Fr.] a famous f.g. ge G ("Grigorchuk's ge") satisfying (i) & (ii). Our G fits into an exact require 1 - ? (abelian) - ? 4 - , 4 - ? /





